p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×C8).4D4, C22⋊C4.7D4, C4.9C42⋊5C2, C4.75C22≀C2, (C2×D4).114D4, (C2×Q8).105D4, C23.35(C2×D4), D8⋊C22.5C2, C23.24D4⋊3C2, (C22×C8).76C22, C4.101(C4.4D4), C22.71(C4⋊D4), C42.6C22⋊1C2, (C22×C4).732C23, C23.C23⋊11C2, C42⋊C2.63C22, C4.25(C22.D4), (C2×M4(2)).24C22, C2.26(C23.10D4), (C2×C4).264(C2×D4), (C2×C4).83(C4○D4), (C2×C4○D4).66C22, SmallGroup(128,785)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22⋊C4.7D4
G = < a,b,c,d,e | a2=b2=c4=e2=1, d4=b, cac-1=dad-1=ab=ba, ae=ea, bc=cb, bd=db, be=eb, dcd-1=bc-1, ece=ac, ede=bd3 >
Subgroups: 296 in 132 conjugacy classes, 40 normal (16 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C23⋊C4, D4⋊C4, Q8⋊C4, C4⋊C8, C42⋊C2, C42⋊C2, C22×C8, C2×M4(2), C4○D8, C8⋊C22, C8.C22, C2×C4○D4, C4.9C42, C23.C23, C23.24D4, C42.6C22, D8⋊C22, C22⋊C4.7D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C23.10D4, C22⋊C4.7D4
Character table of C22⋊C4.7D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 2 | 2 | 2 | 8 | 8 | 1 | 1 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 2ζ85 | 2ζ8 | 2ζ83 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 2ζ8 | 2ζ85 | 2ζ87 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 2ζ83 | 2ζ87 | 2ζ85 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 2ζ87 | 2ζ83 | 2ζ8 | 0 | 0 | complex faithful |
(1 25)(2 30)(3 27)(4 32)(5 29)(6 26)(7 31)(8 28)(9 22)(10 19)(11 24)(12 21)(13 18)(14 23)(15 20)(16 17)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 19 25 14)(2 11 26 24)(3 21 27 16)(4 13 28 18)(5 23 29 10)(6 15 30 20)(7 17 31 12)(8 9 32 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 8)(2 7)(3 6)(4 5)(9 14)(10 13)(11 12)(15 16)(17 20)(18 19)(21 24)(22 23)(25 28)(26 27)(29 32)(30 31)
G:=sub<Sym(32)| (1,25)(2,30)(3,27)(4,32)(5,29)(6,26)(7,31)(8,28)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,19,25,14)(2,11,26,24)(3,21,27,16)(4,13,28,18)(5,23,29,10)(6,15,30,20)(7,17,31,12)(8,9,32,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)>;
G:=Group( (1,25)(2,30)(3,27)(4,32)(5,29)(6,26)(7,31)(8,28)(9,22)(10,19)(11,24)(12,21)(13,18)(14,23)(15,20)(16,17), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,19,25,14)(2,11,26,24)(3,21,27,16)(4,13,28,18)(5,23,29,10)(6,15,30,20)(7,17,31,12)(8,9,32,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31) );
G=PermutationGroup([[(1,25),(2,30),(3,27),(4,32),(5,29),(6,26),(7,31),(8,28),(9,22),(10,19),(11,24),(12,21),(13,18),(14,23),(15,20),(16,17)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,19,25,14),(2,11,26,24),(3,21,27,16),(4,13,28,18),(5,23,29,10),(6,15,30,20),(7,17,31,12),(8,9,32,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,8),(2,7),(3,6),(4,5),(9,14),(10,13),(11,12),(15,16),(17,20),(18,19),(21,24),(22,23),(25,28),(26,27),(29,32),(30,31)]])
Matrix representation of C22⋊C4.7D4 ►in GL4(𝔽17) generated by
0 | 13 | 4 | 13 |
4 | 0 | 13 | 13 |
0 | 0 | 0 | 13 |
0 | 0 | 4 | 0 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
9 | 0 | 0 | 3 |
0 | 5 | 7 | 13 |
7 | 7 | 10 | 15 |
7 | 10 | 15 | 10 |
6 | 6 | 2 | 8 |
8 | 9 | 5 | 1 |
0 | 15 | 8 | 9 |
15 | 0 | 11 | 11 |
6 | 6 | 2 | 8 |
9 | 8 | 12 | 16 |
15 | 0 | 11 | 11 |
0 | 15 | 8 | 9 |
G:=sub<GL(4,GF(17))| [0,4,0,0,13,0,0,0,4,13,0,4,13,13,13,0],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[9,0,7,7,0,5,7,10,0,7,10,15,3,13,15,10],[6,8,0,15,6,9,15,0,2,5,8,11,8,1,9,11],[6,9,15,0,6,8,0,15,2,12,11,8,8,16,11,9] >;
C22⋊C4.7D4 in GAP, Magma, Sage, TeX
C_2^2\rtimes C_4._7D_4
% in TeX
G:=Group("C2^2:C4.7D4");
// GroupNames label
G:=SmallGroup(128,785);
// by ID
G=gap.SmallGroup(128,785);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,141,422,387,58,2019,1018,248,2804,172,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=e^2=1,d^4=b,c*a*c^-1=d*a*d^-1=a*b=b*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=b*c^-1,e*c*e=a*c,e*d*e=b*d^3>;
// generators/relations
Export